3a+b=1
⇒a+b=1-2a....(1)
⇒b=1-3a......(2)
a²+b²
=(a+b)²-2ab
带入(1) 和(2):
=(1-2a)²-2a(1-3a)
=1-4a+4a²-2a+6a²
=10a²-6a+1
=10(a²-3a/5+1/10)
=10[a²-3a/5+(3/10)²-(3/10)²+1/10] 【配方法】
=10[(a-3/10)²-9/100+1/10]
=10[(a-3/5)²+1/100]
=10(a-3/5)²+1/10
因为
(a-3/5)²≥ 0 [任意平方数的最小值是0]
所以
10(a-3/5)²≥ 0
以及
10(a-3/5)²+1/10≥ 1/10
∴a²+b²≥ 1/10