方法1:(给 Bab 10 的)
梯形公式:
其中 a 和 b 分别是 上底和下底 ,也就是 这个 梯形 的base。
而 h 是梯形的高。
回到问题,a 是 x+2,
b 是 2x+1,
而 h 是 8cm
根据 梯形面积公式列方程
1/2(x+2+2x+1) ✖️ 8 =68
(3x+3) ✖️8=68✖️2
24x +24=136
24x=136-24
24x=112
所以,x=(14/3) cm
or (老师可能 prefer) x=(4 2/3) cm
你说要找上底和下底 的长度:
x+2
= (4 2/3) + 2
= 6 2/3 cm
2x+1
= 2(14/3) + 1
= 28/3 + 1
= 31/3
= 10 1/3 cm
如果你要找 “上底“和“下底”的和,那答案是 3x+3= 6 2/3 + 10 1/3=17cm
方法2: (给 Bab 6 的)
假如你没学过梯形面积公式,也可以这样做:(比较慢,但也可以解出这答题)
首先, AB=FE=x+2 因为 ABEF 是长方形,
Area of rectangle ABEF =8(x+2)。
DF+EC= DC- FE= (2x+1)-(x+2)=x-1
首先,Area of triangle ADF= 1/2 ✖️ DF ✖️8
Area of triangle BEC= 1/2 ✖️EC ✖️8
Area of triangle ADF+ Area of triangle BEC
=1/2 ✖️DF ✖️8 + 1/2 ✖️ EC ✖️8
*=1/2 ✖️ (DF+EC)✖️8 【这里有用到 Distributive Law,Form 1 第一课学的】
=1/2 ✖️(x-1) ✖️8
列方程:
Area of rectangle ABEF + Area of triangle ADF+ Area of triangle BEC =Area of trapezium
8(x+2) + 1/2 ✖️(x-1) ✖️8=68
8x+16+4(x-1)=68
8x+16+4x-4=68
12x =68-16+4
12x =56
x =56/12
所以,x= 4 2/3 cm
你要找上底和下底 的长度:
x+2
= (4 2/3) + 2
= 6 2/3 cm |
2x+1
= 2(14/3) + 1
= 28/3 + 1
= 31/3
= 10 1/3 cm |
如果你要找上底和下底的和,那答案是
3x+3= 6 2/3 + 10 1/3=17cm