petua rantai [chain rule] :
(dy/dx) = (dy/du) x (du/dx)
y = (2x - [1/x])2
.
let u = 2x - (1/x) , y = u2
(du/dx) = 2+(1/x2) , (dy/du) = 2u
.
(note: anxn-1 )
2x - (1/x) = 2x - x-1
= 2(1)x1-1 - (-1)x-1-1
= 2 + x-2
= 2 + (1/x2)
.
u2 = 1(2)u2-1
= 2u1
= 2u
(dy/dx) = (dy/du) x (du/dx)
= (2u) x (2+[1/x2])
= 2(2x - [1/x]) x (2+[1/x2])
= 2(2x2-1/x) x (2x2+1/x2)
= [2(2x2-1) x (2x2+1)] / x3
= [2(4x4-1)] / x3
= 8x4-2 / x3 [答案]
把2个挂号里面的变分数
有2个分数是乘所以分子乘分子,分母乘分母,第一个2乘上去
(a+b)(a-b) = a2-b2
(2x2-1)(2x2+1) = (2x2)2 - 12
= (4x4-1)
以上是我自己的算法